Segmentation and classification of hyperspectral images using watershed transformation
نویسندگان
چکیده
Hyperspectral imaging, which records a detailed spectrum of light for each pixel, provides an invaluable source of information regarding the physical nature of the different materials, leading to the potential of a more accurate classification. However, high dimensionality of hyperspectral data, usually coupled with limited reference data available, limits the performances of supervised classification techniques. The commonly used pixel-wise classification lacks information about spatial structures of the image. In order to increase classification performances, integration of spatial information into the classification process is needed. In this paper, we propose to extend the watershed segmentation algorithm for hyperspectral images, in order to define information about spatial structures. In particular, several approaches to compute a one-band gradient function from hyperspectral images are proposed and investigated. The accuracy of the watershed algorithms is demonstrated by the further incorporation of the segmentation maps into a classifier. A new spectral-spatial classification scheme for hyperspectral images is proposed, based on the pixel-wise Support Vector Machines classification, followed by majority voting within the watershed regions. Experimental segmentation and classification results are presented on two hyperspectral images. It is shown in experiments that when the number of spectral bands increases, the feature extraction and the use of multidimen∗Corresponding author. Tel.: +33 (0)6 66 95 72 75; fax: +33 (0)4 76 82 63 84. Preprint submitted to Elsevier August 17, 2009 sional gradients appear to be preferable to the use of vectorial gradients. The integration of the spatial information from the watershed segmentation in the hyperspectral image classifier improves the classification accuracies and provides classification maps with more homogeneous regions, compared to pixel-wise classification and previously proposed spectral-spatial classification techniques. The developed method is especially suitable for classifying images with large spatial structures.
منابع مشابه
Performance Analysis of Segmentation of Hyperspectral Images Based on Color Image Segmentation
Image segmentation is a fundamental approach in the field of image processing and based on user’s application .This paper propose an original and simple segmentation strategy based on the EM approach that resolves many informatics problems about hyperspectral images which are observed by airborne sensors. In a first step, to simplify the input color textured image into a color image without tex...
متن کاملSpectral-spatial classification of hyperspectral images by combining hierarchical and marker-based Minimum Spanning Forest algorithms
Many researches have demonstrated that the spatial information can play an important role in the classification of hyperspectral imagery. This study proposes a modified spectral–spatial classification approach for improving the spectral–spatial classification of hyperspectral images. In the proposed method ten spatial/texture features, using mean, standard deviation, contrast, homogeneity, corr...
متن کاملClassification of hyperspectral data using support vector machine
A new spectral-spatial classification scheme for hyperspectral images is presented. Pixel-wise Support Vector Machines classification and segmentation are performed independently, and then the results are combined, using the majority vote approach. Thus, every region from a segmentation map defines an adaptive neighborhood for all the pixels within this region. The use of several segmentation t...
متن کاملA Comparison Study of Different Marker Selection Methods for Spectral-spatial Classification of Hyperspectral Images
An effective approach based on the Minimum Spanning Forest (MSF), grown from automatically selected markers using Support Vector Machines (SVM), has been proposed for spectral-spatial classification of hyperspectral images by Tarabalka et al. This paper aims at improving this approach by using image segmentation to integrate the spatial information into marker selection process. In this study, ...
متن کاملMorphological Segmentation of Hyperspectral Images
The present paper develops a general methodology for the morphological segmentation of hyperspectral images, i.e., with an important number of channels. This approach, based on watershed, is composed of a spectral classification to obtain the markers and a vectorial gradient which gives the spatial information. Several alternative gradients are adapted to the different hyperspectral functions. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition
دوره 43 شماره
صفحات -
تاریخ انتشار 2010